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ABSTRACT 

Let K be a number  field, and  let h E K[Y] be a po lynomia l  of degree n. 

Fix an integer  0 < i < n and compare  the  set V of those integers a of K 

such t h a t  h(Y)  - aY  i has a root  in K wi th  the  set "R of those integers 

a, such tha t  h(Y)  - aY  i is reducible  over K. If i is copr ime to n, t hen  

we classify the rare  cases where 12 is not cofinite in T~. The  main  tools 

are a theorem of Siegel about  in tegral  points  on algebraic  curves and  the  

theory  of finite groups. 

1. Introduct ion  

Throughout this paper K denotes a number field, and OK is the ring of integers 

in K. Let h(Y) e K[Y] be a polynomial of positive degree n. M. Fried [8], [10] 

studied the question of reducibility of h upon varying the constant coefficient 

inside OK. His result is as follows. 

THEOREM 1.1: Let h E K[Y] be a non-constant polynomial with degh ~ 5, 

which is not the composition of polynomials of lower degree. Denote by TCh the 

set of elements Xo C OK, such that h(Y) - Xo is reducible over K.  I l K  = Q or 

deg h ~ {7, 11, 13, 15, 21, 31}, then all but finitely many Xo ETCh have the form 

h(n) for some ~ E K.  
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Later, Fried [10] studied the case of varying other coefficients than the constant 

one. Again let h(Y)  E K[Y] be of degree n, and fix an integer i with 1 < i < n - 1 .  

Suppose h(0) r 0. Let 7r be the set of those xo E OK, such that  h(Y)  - x o Y  i is 

reducible, and let Vh be the set of those x0 E OK, such that  h(Y)  - xo Y i  has a 

root in K. Observe that ~h is just the set of those integers of K which h ( Y ) / Y  ~ 

does assume on K. Fried's result is 

THEOREM 1.2: I f  gcd(i, n) = 1 and 2 < i < n - 2, then 7r \ Vh is a finite set. 

Actually he proved this only for K = Q. A slight extension of his arguments 

yields the general case; see section 10. 

A quite different situation arises if i = 1 or n - 1. This case, posed as Problem 

7.5 in [10], requires a finer group-theoretic analysis. The main object of this 

paper is to give a complete answer in this case. Note that by passing to the 

reciprocal polynomial with respect to Y, we can assume i = 1 throughout. Our 

result is 

THEOREM 1.3: Let h (Y)  E K[Y] be a polynomial of  degree n with h(O) ~ O. 

Denote by T~ h the set of elements Xo E (gg, such that h (Y)  - x o Y  is reducible 

over K,  and let Vh be the subset of those Xo E (gg, such that h (Y)  - xoY  has a 

root in K.  Then the following holds. 

(a) / f  K = Q, then 7r is finite. 

(b) I f  n r {4, 6, 8, 9, 12, 16}, then T~h \ Vh is finite. 

(C) I f  n E {4, 6, 8, 9, 12, 16}, then there are number fields K and polynomials 

h ( Y )  E K[Y] of  degree n, such that T~h \ Vh is infinite. 

(d) There are polynomials h E Q[Y] of degree 4 (/'or instance (Y  - 1)4), such 

that T~h \ Vh is infinite for every real-quadratic number field. 

These results can be seen as tightenings of Hilbert's irreducibility theorem for 

h(Y)  - X Y  ~ (which says that if f ( X ,  Y )  E K[X,  Y] is irreducible, then ](Xo, Y) 

remains irreducible for infinitely many x0 E OK). 
In our case we have f ( X ,  Y )  = h(Y)  - X Y  i, so by the above results the sets 

7~h of those xo mak ing / (x0 ,  Y) reducible differ from Vh just by finitely many 

elements in the specified cases. The importance of this lies in the fact that  the 

sets Vh can be studied more easily than T~h. 

C. L. Siegel made this sort of problem accessible, when he demonstrated how to 

apply his theorem that every affine algebraic curve with infinitely many integral 

points admits a rational parametrisation. Later, Fried refined this approach, and 



Vol. 94, 1996 REDUCIBILITY BEHAVIOR OF POLYNOMIALS 61 

gave a convenient translation to a question about finite groups; see Proposition 

4.1. 

By this translation, one gets a lot of conditions on a finite group, together with 

two permutation representations. In the subsequent sections we narrow down, 

step by step, the possible configurations. 

In the course of this we need to know the transitive groups of degree n which 

contain an (n - 1)-cycle. In section 6 we classify them. That is the only place 

where the classification of finite simple groups comes in. However, we show 

without using the classification that  such groups are affine groups acting on a 

vector space, or PSL2(p) acting on the projective line (with p _> 5 a prime), or 

they are 3-transitive. For this we invoke results of O'Nan and Aschbacher about 

2-transitive groups. This allows us, using several rationality arguments, to give 

a classification-free proof of Theorem 1.3(a). 

In order to prove part (b), we make use of the classification of the primi- 

tive genus 0 groups of affine type, given by R. Guralnick, J. Thompson, and 

M. Neubauer. As they are only determined up to small cases, we use the com- 

puter algebra system GAP to investigate the small cases. 

To prove that  the polynomials h to be given really fulfill the assertion in (c), we 

apply a sharpening of Hilbert's irreducibility theorem, which is due to P. D~bes. 

I thank D~bes and Fried for directing me to this and related results. Using the 

ramification data given in the proof of 8.1, these exceptional polynomials can be 

computed using the techniques described in [20]. 

The proof of part (d) is quite elementary. 

The proof of 4.2 follows a suggestion by the referee, and simplifies the original 

argument. 

2. Monodromy groups 

Let K C C be a number field, and let t be a transcendental over C. Fix an 

extension L of K(t) of degree n, such that  K is algebraically closed in L. Denote 

by ~ the Galois closure of LIK(t), taken in an algebraic closure of C(t). Then 

G = Gal(ftiK(t)) is called the a r i t h m e t i c  m o n o d r o m y  g r o u p  of LIK(t), where 

we regard G as a permutation group, permuting transitively the n conjugates of 

L inf t .  

Denote b y / ~  the algebraic closure of K in f~. Then G = Gal(ftl/~(t)) is called 

the g e o m e t r i c  m o n o d r o m y  g roup  of nlg(t ). Note that  GIG ~ Gal( /~lg) ,  
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and that  G still permutes the n conjugates of L transitively, as L and/~( t )  are 

linearly disjoint over K ( t ) .  

The notion m o n o d r o m y  g roup  is justified by the following connection with 

Riemann surfaces. As C(t) N Q = /~(t) (see [3, Corollary 2, V, w we get 

Gal(CA2[C(t)) - Gal(Q[/~(t)) by restriction. For any holomorphic covering a: A 

--~ B of Riemann surfaces, denote by a*: AJ(B) ~ A/I(A) the natural inclu- 

sion of the fields of meromorphic functions on B and A. Associated to CL[C(t) 

is a branched, holomorphic covering lr: S --* p1 of degree n with S a con- 

nected Riemann surface and I? t the Riemann sphere, such that the extension 

AA(S)ITr*(A4(I~I)) can be identified with CL[C(t). Observe that A/[(P 1) ---- C(t). 

Let /3  = {bl, b2, . . . ,  b~} be the set of branch points of r .  Fix p E p1 \ /~ ,  and 

denote by G the fundamental group ~rl(F 1 \ B,p). Then G acts transitively on 

the points of the fiber 7r-l(p) by lifting of paths. We fix a numbering 1, 2 , . . . ,  n 

of this fiber. Thus we get a homomorphism G --* Sn. By standard arguments, 

the image of G can be identified with the geometric monodromy group G defined 

above, thus we write G for this group, too. 

We choose a standard homotopy basis of p1 \ B as follows. Let 7/ be rep- 

resented by paths w/ which wind once around b/ counterclockwise, and around 

no other branch point, such that 7172""7~ = 1. Then 71 ,72 , - . . ,%-1  freely 

generate G. 

Defini t ion:  For a E Sn, let e l , . . . ,  em be the cycle lengths of a. Define the index 
rn 

of a by inda  -~ ~-~j=l(ej - 1). 

Let a~ be the image of 7i in S~. If the points s l , . . . ,  Sm in the fiber of bi have 

multiplicities e t , . . . , e m ,  respectively, then ai has cycle lengths e l , . . . , e m .  In 

particular i n d a / =  n - [Tr-l(b/)l. If g denotes the genus of S, then we get 

is generated by a t , . . .  , a t ,  and the following holds: 

(1) a l a 2 " -  a~ = 1, 

(2) Z i n d a i  = 2 ( n -  1 -b g), 
i 

where (2) is a consequence of the Riemann Hurwitz genus formula. 

This tuple {al, a2 , . . . ,  at} is usually called the b r a n c h  cycle desc r ip t ion  of 

the covering 7r. 
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Definition: Let R = P/Q be a reduced fraction of the non-trivial rational func- 

tion R E K ( X )  with P,Q E K[X]. Then let degR = max(degP,  degQ) be the 

degree of R. 

We are mainly concerned with the case that the field L is a rational field K(x).  

Then t -- R(x) with a rational function R of degree n. Fhrther, the Riemann 

surface S is just the Riemann sphere p1, and the covering map ~r is induced by 

the rational map sending w E p1 to R(w). 

If we are talking about the arithmetic (or geometric) monodromy group of 

R, we mean the arithmetic (or geometric) monodromy group of the extension 

K(x)iK(t) .  In this case g = 0 in (2). A transitive subgroup of Sn with (1) and 

(2) with g = 0 is called a genus  0 g roup ,  and the two equations will be called 

the genus  0 c ond i t i ons  on a finite group G. 

For later use we record an immediate consequence of Liiroth's theorem, where 

G is the arithmetic monodromy group of R. 

LEMMA 2.1: Let U be the stabilizer of x in G. Then every group M with 

U <_ M <_ G yields a composition R(X)  = a(b(X)) with a, b E K(X) ,  such that 

M is the stabilizer orb(X).  Fhrthermore, [G: M] = dega and [M: U] = degb. 

3. C o n s e q u e n c e s  f r o m  Siegel ' s  t h e o r e m  

Let f ( X ,  Y)  E K[X, Y] be an irreducible polynomial, which is monic with respect 

to Y. Set 

T~f • {X 0 e (~g] f(Xo, Y )  is reducible in K[Y]}. 

For R E K ( X )  define 

VR = R(K)  N OK, 

that is )?R consists of those integers of K which R assumes on K. The number- 

theoretic key for effective versions to Hilbert's irreducibility is Fried's follow- 

ing refinement of an observation of Siegel [26, pp. 244-245]. Fried's proof of 

[8, Theorem 1] extends easily to a proof of the following result. 

THEOREM 3.1: There are finitely many non-constant rational functions 

with 

R1, R2, . . . ,RI  E K ( X )  

l 
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where W is a finite set and the polynomials :(Ri(X), Y) �9 K(X)[Y] are reducible 

f o r / = l , . . . , / .  

We are going to show that the rational functions Ri can be chosen with rather 
l specific properties. For this choose the Ri subject to ~ = 1  deg Ri being minimal. 

Then the following holds. If Ri admits a decomposition Ri(X) = a(b(X)) with 

a,b �9 K(X) and degb > 1, then f (a(X),Y)  is irreducible. This is clear, for 

otherwise Vn~ C_ Va C_ 7r and we could replace Ri by a. Further, VR, is an 

infinite set, or Ri were superfluous, because we may enlarge W. The latter 

property on the value set of Ri yields a strong conclusion. By another deep 

theorem of Siegel [26] (see also the proof of [18, Theorem 8.5.2]), the function R~ 

has exactly two values over oe. Interpreting Ri as a map from K u {oo} to itself, 

we write IR~-l(oo)l < 2. We summarize. 

There are finitely many rational functions R1, R2,. �9 Rt �9 COROLLARY 3 . 2 :  

K(X) with 
l 

~: = U YR, u W, 
i=I 

where W is a finite set. For every R C {R1, R>. . . ,  Rt} the following holds. 

(a) f (R(X),  Y) is reducible in K(X)[Y]. 

(b) If R(X) = a(b(X)) with a,b �9 g ( x )  and degb > 1, then f (a(X) ,Y)  is 

irreducible. 

(c) IR-I(c~)I < 2. 

(d) IR(K) n O~cl = oo. 

As remarked above, (c) is a consequence (d). However, (d) cannot be inter- 

preted galois-theoretically. So we use the weaker condition (c) instead. At the 

very late state of the investigation we have to use (d) though. 

4. Group-theoret ic  consequences  

In the case of f (X,  Y) = h(Y) - X Y  i with gcd(i, deg h) = 1, we outline the trans- 

lation of conditions (a), (b), and (c) of 3.2 via Galois theory and the monodromy 

considerations in section 2 to a bunch of conditions on a finite group. This is 

already contained in [10]. 

Notations: In the following let h(Y) c K[Y] be a polynomial of degree n, and i 

be an integer with 1 < i < n - 1. Set H(Y) := h(Y) /Y  i, and let R(X) E K(X) 
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be a non-constant rational function. Let t be a transcendental over C, and choose 

x and y in an algebraic closure of C(t), such that 

n(y)  = R(x) = t. 

Denote by f~ the normal closure of K(x,y)]K(t) ,  and set G = Gal(~lK(t) ) .  

Denote the normal closure of K(x) lK( t  ) by ft~. Let Gx be the stabilizer in G of 

x, and denote the stabilizer of ~tx by N~. With T, we denote the permutation 

representation of G on the deg R conjugates of x over K(t).  Then N~ is just the 

kernel of this representation, and G/N,  is the arithmetic monodromy group of 

R. Analogously define the symbols indexed by y. 

Let /~ be the algebraic closure of K in ft. Set G = Gal(121/~(t)) and G~ = 

a G~. The following diagram illustrates the various inclusions of groups and 

fields. 

~2 

a~ K(y) K(x) as 

K(y) K(x) 
\ /  

K(t) 

g~ / Gy 

Gy 

\ 

1 

G~ N~ 

/ / 

Gx 

/ 
G 

PROPOSITION 4.1: Let h(Y) E K[Y] be a polynomial of degree n, and 

1 < i < n -  1 with gcd(i ,n) = 1. Further let R C K ( X )  be a non-constant 

rational function with the following properties. 

(a) h(Y)  - R ( X ) Y  i is reducible in K(X)[Y]. 

(b) If  R (X)  = a(b(X)) with a,b �9 K ( X )  and degb > 1, then h(Y)  - a ( X ) Y  i 

is irreducible in K(X)[Y]. 

(c) IR- l (~ ) l  < 2. 

Then, with the notation from above, the following holds. 
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(1) G~Gy C G (proper subset). 

(2) MGy = G if  G~ < M < G. 

(3) Ty(G) is a primitive group (or equivalently, G N Gy is maximal in G). 

(4) N~ = ivy = 1, that is the representations Ty and T~ are faithful 

(5) Ty(G) and T~(G) are transitive. Further, G possesses a generating system 

al , a2, . . . , ar with the following properties. 

(i) ala2""~r~ = 1. 

(ii) Ty (a~) has two cycles, of lengths i and n - i. 

(iii) ~ i n d T y ( a i )  = 2 ( n -  1). 

(iv) T~(a~) has at most two cycles. 

(v) ~-~indT~(ai) = 2 ( d e g R -  1). 

Proof  

T o  (1): The condition (a), namely that h ( Y ) - R ( X ) Y  i is reducible over K ( X ) ,  

says that G~ does permute the conjugates of y intransitively. Since the operation 

of G~ on the conjugates of y is equivalent to the operation on the left cosets of 

Gy in G, the assertion follows. 

TO (2): Now let M fulfillG~ < M _< G. Then there are a,b E K ( X )  with 

R ( X )  =- a(b(X)),  deg b = [M: Gx] > 1, and M is the stabilizer of K(b(x))  (see 

2.1). The irreducibility of h ( Y ) - a ( X ) Y  ~ (by (b)) just  says that M does permute 

the conjugates of y transitively, thus (2) holds. 

The proof of (3) depends on the element a~ of (5), so we first prove (5). 

T o  (5): The transitivity of Ty(G) is a direct consequence of the fact that 

h(Y)  - t Y  i is irreducible even over /~(t). Indeed, Ty(G) is just the geometric 

monodromy group of H. The same argument works for T~(G). 

Let Y be the union of the branch points in p1 of the coverings H: p1 __. p1 and 

R: p1 ~ p1. Suppose further cr E B (that is automatically the case if n > 2). 

Fix p E p1 \ B, and choose a generating system 71, 72 , . . . ,  %. of the fundamental 

group G = zrl(P 1 \ / 3 , p )  as in section 2, where % corresponds to cr We get 

homomorphisms G ~ G/ (G N N~) and G ~ G/ (G n Ny) of G into the geometric 

monodromy groups of R and H, respectively. As ~ is the composite of ~ and 

f~y, the groups N~ and ivy intersect trivially. Thus we get a canonical injection 
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-* G / ( G  N N~) x G / (G  n Ny). From this we obtain a natural homomorphism 

--~ G, and the images ai of the elements 7~ fulfill (i), (iii), and (v). 

We get (ii), because above c~ there are, with respect to H(Y) = h(Y)/Y i, the 

/-fold point 0 and the (n - / ) - f o l d  point oc. Analogously (iv) follows from (c). 

T o  (3): If Ty (G) were not primitive, then there would be a non-trivial partit ion 

of the set which T~(G) acts on in blocks of imprimitivity. However, Ty(a n-i) is 

an/-cycle  as gcd(i, n - i) = 1, and T~(a~) is an (n - / ) -cyc le .  This shows that 

every block would be contained in one of the cycles of T~(ar), a contradiction for 

divisibility reasons. 

T o  (4): From (1) we get NxGy < G, and (3) implies that  Gy is maximal in G 

(because Ty(G) >_ Ty(G) is primitive). Thus N~ is contained in Gy, and we get 

N~ < N~ (as Ny is the biggest normal subgroup of G which is contained in Gy). 

We get the other inclusion as follows. Suppose Ny ~ N~, then Ny ~ G~. Now, 

with M = G~Ny and using (1), we get a contradiction to (2): Gx <: MGy = 
GxGy < G. As N~ and Ny intersect trivially, (4) follows. | 

Next we show that  the configuration is rather restricted if 2 < i < n - 2. 

PROPOSITION 4.2: Suppose that 2 < i < n - 2  in Proposition 4.1. Then G -- An 

or Sn, Ty is a natural representation of degree n, and the subgroups G~ and Gy 
are conjugate in G. 

Proof'. Let a be the element ar in (5). Obviously n _> 5. As we will use only 

(1), (2), (3), (4), (5)(ii), and (5)(iv) of 4.1, we may assume 2 < i < n/2. From 

(3) we get that  T~(G) is primitive, and (5)(ii) tells us that  Ty(a n-i) is an/-cycle. 

Hence Ty(G) = As or Sn in the natural representation, by an old theorem of 

Marggraf; see [27, 13.8]. Let m be the length of the smallest orbit of the (by (1)) 

intransitive subgroup Ty(G~) of T~(G). As Ty(M) is transitive for every proper 

overgroup M of Gx, we get that  Ty(G~) is the full stabilizer in Ty(G) of a set of 

size m. Thus the representation T~ of G is given by the natural action of G on 

the subsets of size rn of {1, 2 , . . . ,  n}. Suppose that m >_ 2. Let F be an orbit of 

size i of Ty((cr)). Then there are subsets of {1, 2 , . . . ,  n} of size m which intersect 

F in 0, 1, and 2 elements respectively. These three subsets cannot be conjugate 

under the action of a, contradicting the assumption that T~(a) has at most 2 

cycles. Thus m = 1 and G~ and Gy are conjugate. | 
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5. Some  resu l t s  for i = 1 

As mentioned already in the Introduction, the case i = 1 differs strongly from the 

easy case 2 < i < n - 2  we just dealt with. Later we will classify all configurations 

such that  (1) through (4) in Proposition 4.1 hold, and that Ty(G) contains an 

(n - 1)-cycle. The following Proposition 5.2 is a preparatory result towards this. 

The technical part (ii) of 5.2 will replace the usage of the classification of the 

finite simple groups when proving Theorem 1.3(a). That is if we would use the 

classification, the proof of (a) could be shortened. 

Before this we need a simple character-theoretic fact about 2-transitive groups. 

LEMMA 5.1: Let G be 2-transitive of degree n, and let V be a subgroup of 

G. Denote by X the permutation character of G (i.e. x(g) is the number of 

fixed points of  g 6 G). Let l v  be the trivial character of V. Then the induced 

character lay is the permutation character of G with respect to the action on the 

right cosets of V in G. Then the following holds. 

(i) I f  [G: V] < n, then V is transitive. 

(ii) I f  [G: V] = n, and V is intransitive, then X = IVy �9 

Proo~ Let b be the number of orbits of V. Then (see [13, 4.3.5]) 

b = (Xlv, l v ) v .  

Frobenius' reciprocity [13, 4.4.5] yields 

b = (Xlv, Xv)v = (X, IG)G �9 

As G is 2-transitive, X is the sum I + ~ of the trivial character and an irreducible 

character r [13, 4.3.4(ii)]. In order to show (i) and (ii), suppose that V is 

intransitive, hence b > 1. From the above, r is a summand of the character 1~. 

Because the trivial character is also a summand of 1~, we get 

I~  = X + r  

with r a sum of non-negative multiples of irreducible characters of G. Evaluating 

in 1 6 G yields 

[G: V] : n + r _> n 

with equality if and only if r is 0. From this the assertion follows. | 

In the following it does not matter whether we consider right or left cosets, as 

changing the side amounts to passing to a permutation equivalent representation. 
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PROPOSITION 5.2: Let G~ and Gy be two subgroups of  a finite group G, such 

tha t  G acts faithfully via T~ (resp. T~) on the cosets of G~ (resp. Gy) in G. 

Let n = [G: Gy] be the degree of Ty. Let a be an element of G, such that the 

following conditions hold. 

(1) a~ay  < a. 

(2) M G y = G  ifG~ < M  <_G. 

(3) is an (n - X)-cycle. 

(4) T~(a) has at most two cycles. 

Then the following holds. 

(i) T~(a) has two cycles of lengths I and n - 1, where 1 divides n - 1. Further- 

more, T~(Gy) has exactly two orbits of lengths l and n - 1. 

(ii) Suppose that T~(G) is 3-transitive and that G~ and Gy are not conjugate. 

Then l = n - 1. Let E be the support of T~ (i.e. the coset space G/Gy), 

and E* be the set E minus the point fixed by Ty(Cy). Hence Ty(Gy) acts 

2-transitively on E*. Let U and V be subgroups of G~, such that Ty(U) is 

a point stabilizer of this representation on E*, and that T~(V) is a point 

stabilizer of the representation of T~(Cy) on one of its two orbits. Then 
Gy Gy 

l t ;  = 1 v , however  U and V are not conjugate in G~, except for n = 4. 

Proo~ Withou t  loss of general i ty  assume a E Gy. Obviously  Ty(G) is a 2- 

t ransi t ive  p e r m u t a t i o n  group. The  group Tr is intransi t ive by (1), on the  

other  hand  it has at  mos t  two orbi ts  by (4). Thus  T~(G~) has exact ly  two orbi ts  

of lengths k > 1 > 1, and  these are just  the cycles of T~(a). As the orders of 

T~(a) and T~(a) are the same,  we get n - 1 = lcm(k,  l). The  in t rans i t iv i ty  of 

T~(Gy),  together  wi th  5.1(i), implies k + 1 >_ n. F rom this we conclude k = n - 1 

and l[n - 1. This  proves (i). 

F rom now on let Ty(G) be 3-transit ive.  We are going to app ly  5.1(i) and  (ii) 

to  the  act ion of Ty(Gy) on the  (n - 1)-element set E*. Note  t ha t  V = G~ N G~ 

for a sui table g C G. Firs t  suppose t ha t  Ty(V) is t rans i t ive  on E*. T h e n  Ty(G~) 

is ei ther  t rans i t ive  on E - -  con t ra ry  to (1), or G [  <_ Gy - -  con t ra ry  to (2) in 

connect ion wi th  the non-conjugacy of Gy and G~. Thus  Ty(V) acts  intransi t ively 

on E*, and f rom 5.1(i) we get [Gy: V] > n - l ,  hence I = n - 1  by (i). The  assert ion 

abou t  the induced characters  then  follows f rom 5.1(ii). 

I t  remains  to show tha t  the subgroups  U and V of Gy are not  conjugate  in 

Gy, except  for n -- 4. Suppose they  are conjugate.  T h e n  Ty(V) has  an orbi t  of 

length n - 2 on E*, since Tu(U ) has an orbit  of this length on E*. Thus  Ty(G~) 
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has an orbit of length at least n - 2 on E. We have seen above that Ty(Gx)  is 

neither transitive, nor does it fix a point. Thus Ty(G~) has an orbit of length 2. 

Without loss we may assume that  Ty(Gv)  fixes one of these two points. Then 

the following holds: 

IGyGxI IG~Gyl [G: Gy] _ (n n n 
2 -  iGy I - IG~I [G:G~] - 1 ) 2 ( n - I )  = 2 '  

hence n = 4, and the assertion follows. | 

6. P e r m u t a t i o n  g r o u p s  o f  d e g r e e  n c o n t a i n i n g  a n  (n - 1)-cycle 

Let G he a group acting primitively on an n-set E. Denote by A a minimal 

normal subgroup of G. Suppose that A is elementary abelian of order pm with p 

a prime. Then A acts sharply transitively on E. Fix a point ~v E E, and identify 

the elements a E A bijectively with w a E E. Denote by U the stabilizer in G of 

w. Then G = A ~ U, and the action of U on E yields a linear action on A via 

this identification, as (wa) u = w ~-la~. U acts faithfully on A by conjugation, 

because A is transitive. Thus we can identify A with the vector space F~p, and 

U is a subgroup of GLm (p). The action of G on E is described by the action of 

A ~ U on the affine space A. 

If this situation arises, we will say that G is an aff ine g roup .  

We say that a group G is p ro j ec t i ve ,  if PSLm(q) < G < PFL,~(q) (q a prime 

power), where G acts naturally on the points of the projective space of dimension 

m - 1 .  

In particular, the projective special linear group PSL2(p) (p a prime) will 

always, unless otherwise said, be considered as the permutation group of degree 

p + 1 on the projective line over Fp. 

By Mn (n E (11, 12, 22, 23, 24}) we denote the Mathieu group in its natural 

multiply transitive representation of degree n. However, for Mll  we will mostly 

consider the 3-transitive representation of degree 12. 

Without using the classification of finite simple groups (and results derived 

from this), we prove 

THEOREM 6.1: Let G be a transit ive permuta t ion  group o f  degree n which 

contains an (n - 1)-cycle. Then G is a//ine, or PSL2(p) with p >_ 5 prime,  or 

3-transitive. 
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Using the classification of the 3-transitive permutation groups, which rests on 

the classification of the finite simple groups, we will get 

THEOREM 6.2: Let G be a transitive permutation group of degree n which 

contains an (n - 1)-cycle. Then G is affine or An (n even), Sn, PSL2(p) or 

PGL2(p) with p >_ 5 prime, MI1 of degree 12, M12, or M24. 

Using a result of W. Kantor [16], which does not rely on the classification of 

the finite simple groups, we can specify the affine groups with an (n - 1)-cycle. 

LEMMA 6.3: Let G be an affine group of degree n containing an (n - 1)-cycle. 

Then n = qe with some prime power q and G = ~qq ~ U with GLe(q) _< U _< 

FLe(q). Thereby G acts naturally on the aft/he space ~ .  

The essential tools in the proof of Theorem 6.1 are the following pre-classifica- 

tion results of O'Nan and Aschbacher. 

THEOREM 6.4 (O'Nan [24, Theorem D]): Let G be a 2-transitive group on the 

finite set E. Denote by G~ the stabilizer of some w C E. Suppose N is a normal 

subgroup of G~ which is 2-transitive on each of its orbits on E \{w}.  Then one 

of the following holds. 

(1) N is transitive on E \{w} and G is 3-transitive. 

(2) G is projective. 

(3) INI = 2 and a is a ne. 

THEOREM 6.5 (O'Nan [24, Proposition 4]): Let G be a 2-transitive group on 

the finite set E. Let N be a normal subgroup of the stabilizer G~ o f t  C E. Then 

one of the following holds. 

(1) N restricts faithfully to its orbits on E \{w}. 

(2) G is projective. 

THEOREM 6.6 (Aschbacher [1, Theorem 3]): Let G be a 2-transitive group on 

the finite set E. Let N be a non-trivial cyclic normal subgroup of the stabilizer 

G~ of ~ C E. Then one of the following holds. 

(1) G is afline. 

(2) G normalizes PSL2(q). 

(3) G normalizes PSU3(q) in its natural 2-transitive representation of degree 

q3 + 1 (cf [15, xI, lo.12]). 
(4) G = PFL2(8) of degree 28. 
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Remark: That  the groups in 6.2, and, for the affine case, in 6.3, really contain 

an (n - 1)-cycle is clear. In the affine case, this follows from the existence of a 

Singer group in GLm(q) (to be obtained from the regular representation of the 

multiplicative group of Fq, on Fq~ ~- A). If G is neither affine, alternating, nor 

symmetric,  then the degree is p + 1 with a prime p. As p divides the order of G, 

it contains an element of order p. 

PROOF OF 6.1 AND 6.3. We proceed in several steps. If G is affine, then 

G = A >4 U with A -~ ~ and U < GLm(p). Then U contains an element which 

cyclically permutes the non-zero elements of A. W. Kantor classified linear groups 

with these properties; we just get 6.3 from [16]. 

From now on assume that  G is not affine, and denote by E the set which G 

is acting on. Let a be an ( n -  1)-cycle in G, and w E E be a fix-point o f a .  

Denote by G~ the stabilizer of w. We are going to construct a normal subgroup 

of G~. Set E \{w}  = E* and Z := (a). Then Z acts sharply transitively on E*. 

Write E* as a disjoint union A1 U A2 U . . .  U At of subsets Ai which are permuted 

by G~, subject to IAll > 1 being minimal. Set A = A1 and let Gz~ <: G~ be 

the setwise stabilizer of A. By minimality of [All, the group G/, restricts to a 

primitive group on A. Set ZA = Z A Gz~. The cyclic group Z permutes the 

A~'s transitively, and Zz~ fixes every Ai as Z is abelian. Thus the sets Ai are 

just the orbits of Z/, on E*. Denote by N the kernel of the action of G~ on 

{A1, A 2 , . . . ,  At}. Then clearly Zz~ <_ N ~ G~. 

STEP 6.7: N acts primitively on every Ai. 

Proof It  suffices to show that  N is primitive on A. Suppose that  A admits 

a non-trivial parti t ion in blocks F 1 , . . . ,  Fm of imprimitivity with respect to the 

action of N. Similarly as above, we see that  the sets Fj are the orbits of a 

subgroup of ZA with order [F1]. Let g E GA and x E N be arbitrary. Then 
X I x ~=gxg - 1 C N a n d F y  = F j , .  From 

x = x -lg = = 

we see that  {F~ , . . . ,  F~} is also a parti t ion of A in blocks of imprimitivity with 

respect to the action of N. In particular, the sets F~ are the orbits of the same 

subgroup of Z/,, as Zz~ is cyclic. This shows that  {F1 , . . . ,  Fro} is a parti t ion in 

blocks which are permuted by GA, contrary to the primitivity of Gz~ on A. | 
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STEP 6.8: N is either 2-transitive on its orbits in E*, or G is either projective, 

or PFL2(8) of degree 28, or normalizes PSU3(q) in its natural  representation of 

degree q3 + 1. 

Proof: N is primitive on A by 6.7. N contains the on A sharply transitive 

subgroup Zz~. Suppose that  N is not 2-transitive on A. By classical theorems of 

Schur and Burnside (see [27, 11.7 and 25.3]), we get IZAI = p with p a prime, and 

ZA is a characteristic subgroup of the restriction Nit , .  Suppose that  G is not 

projective. Then N acts faithfully on A by Theorem 6.5. In particular Zz~ is a 

non-trivial cyclic normal subgroup of G~. Now Theorem 6.6 yields the assertion. 

| 

STEP 6.9: G is projective or 3-transitive. 

Proof'. If N acts 2-transitively on its orbits in E*, then Theorem 6.4 yields the 

assertion. In virtue of 6.8 we merely have to exclude the groups PFL2(8) and G 

with PSU3(q) <3 G. 

We begin with G -- PFL2(8). Suppose that  G contains an element of order 27. 

Then a suitable power of a preimage of this element in FL2(8) has order 27 as well. 

We use the natural  embedding FL2(8) r GL6(2) to find an element T e GL6(2) 

of order 27. We use gcd(27, 2) = 1, together with Maschke's Theorem [13, 3.3.1], 

to write F~2 as a direct sum V1 | . . .  G Vr of subspaces which are invariant and 

irreducible under 7. Now 27 is the lowest common multiple of the orders of the 

restrictions f l y  ~. Thus TIv ~ has order 27 for one index i. Let d be the dimension of 

this V~. Schur's Lemma [13, 3.5.2] tells us that  T can be regarded in a natural  way 

as an element of the multiplicative group of F2~. However 27[(2 d - 1), together 

with 1 < d < 6, yields a contradiction. 

Now let G normalize PSU3(q), hence G <_ PFU3(q) as we conclude from the 

knowledge of the group of outer automorphisms of PSU3(q), cf. [4]. Note that  

q > 3 as G is supposed to be not affine. Assume that  PFU3(q) does contain 

an element of order q3. From FL3(q 2) > FU3(q) we see that  also rL3(q 2) does 

contain an element of order q3. Set q = pe with p a prime. Using the embedding 

FL3(q 2) ~-~ GL6e(p), we find an element r �9 GL6e(p) of order p3e. Obviously r 

is a unipotent matrix. Write 1 + Af with a nilpotent matr ix  X .  Let w be the 

smallest power of p with w _> 6e. Then w < 6pe and Af ~ = 0. We get 

~-~ = (: + A t )  ~ = :~ + X  TM = : ,  
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hence 
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hence p3e < w. This  yields p3e < 6pe, and finally we get e -- 1 and p = 2, 

cont rary  to q >_ 3. | 

STEP 6.10: Le t  G be projec t ive .  T h e n  G = PSL2(p) or G = PGL2(p)  for a 

p r i m e  p, or G = PFL2(4)  = $5. 

Proof'. We investigate the group PFLm(q)  wi th  m > 2 and n = qm-1 with  
- -  q--1 

q = p~, p E P. I t  suffices to show tha t  the presence of an (n - 1)-cycle forces 

m = 2 and q E P U { 4 } .  Let T E FLm(q) be a p r e i m a g e  of an ( n -  1)-cycle 

in PFLm(q). Then  trl = (n - 1 ) - I  wi th  lie - 1. Fur thermore ,  (~-) fixes a one- 

dimensional  subspace L of F~q, and acts wi th  orbits  of lengths > n - 1 on F~q \ L. 

Set p := rq, then  IPl = Ir[/q = 1. (qm-1  _ 1)/(q - 1). We identify F~q with  ~ ' * .  

Then  (p) has orbits  of lengths > (n - 1 ) /q  on ~pm \ L. From gcd(Ip[ ,p ) = 1 and 

Maschke 's  Theo rem we get 

~m = L e Y l e Y 2 e . . . e Y ~  

with p-irreducible subspaces V/. For any 0 ~ v E V/we  get 

n - 1  qm-1 _ 1 - = 1 +p~  + . . .  + p e ( m - 2 )  >_ pe(m--2), 
q q - - 1  

Firs t  consider m > 3. From 

we get 

d im V/ _ 1 + e ( m  - 2). 

m e  = d im L + E d im V~ 
i=1 

me _> e + r .  ( 1 +  e ( m -  2)), 

hence 
e ( m  - 1) m - 1 

r<_ l + e ( m - 2 )  < ~ m - 2 - < 2 '  

and therefore r = 1. This  implies 

(3) dimV1 = e (m - 1). 

Now V1 ~ is also invariant  and irreducible under  p. But  V1NV~ = {0} is impossible,  

for this would imply e + 2e(m - 1) <_ em, hence m = 1. This  leaves the only 

a l ternat ive  V~ = V1. For 0 ~ v E V1 we get 

IVxl > Iv<~>l >n-i = q + q 2 + . . . + q ~ - l ,  
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hence dim V1 > e ( m -  1), contradicting (3). 

Thus m = 2. Then n - 1  = q, and T l is an element of order q in rL2(q),  because 

gcd(/, q) = 1. We conclude that  GL2~(p) contains an element a of order q. We 

finish similarly as in the proof of 6.9. The element a is unipotent, so a = 1 + Af 

with a nilpotent matr ix  Af. Let w be the smallest p-power greater than  or equal 

to 2e. Then Af w = 0 and w < 2pe. It  follows a TM = 1, hence 

pe __ q __ lO. I ~ w < 2pe 

and therefore 
pe-1 < 2e. 

F r o m 2  e - l < 2 e i f e _ > 4 w e g e t e _ < 3 .  I f e > l ,  t h e n p = 2 ,  e = 2 o r 3 ,  o r p = 3 ,  

e = 2 .  

But PFL2(9) contains no element of order 9, because such an element was 

contained in PGL2(9). However, the latter group has an elementary abelian 

Sylow 3-subgroup. 

Analogously exclude PFL2(8). 

The case PFL2(4) = $5 occurs, of course. | 

PROOF OF 6.2. In view of 6.1, we may assume that  G is 3-transitive, but 

neither alternating, symmetric,  or projective. But then the classification of the 

3-transitive groups (see e.g. [2, Section 5], together with [4]) tells us G = Mll  

of degree 11 or 12, M12, M22, Aut(M22), M23 or M24. A look into [4] shows us 

that  none of these groups contains an element of order n -  1, except for Mll  with 

n =  12. 

7. Groups which meet  the conditions from Proposit ion 5.2 

In this section we classify the group theoretic configurations from 5.2. For the 

sake of easier reading, we change the notation a bit. We let G be the permutat ion 

group Ty(G), and set V = G~. The action T~ is then just the action of G on the 

coset space G / V .  

The conclusions in Proposition 7.1(a) are just necessary conditions. A partial  

converse, i.e. a construction of V which meets all the requirements, is given in 

Proposition 7.2. 

We adapt  the conditions (1) to (4) from Proposition 5.2 to this new notation. 
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PROPOSITION 7.1: Let  G be a transitive group of degree n, which contains a 

subgroup V and an element a subject to following conditions. 

(1) V is intransitive. 

(2) Every group M with V < M <_ G is transitive. 

(3) a is an (n - 1)-cycle. 

(4) a has a t  most two cycles on the coset space G / V .  

Then the  cycle lengths of a acting on the coset space G / V  are n - 1 and l as 

below, and one of the following holds. 

(a) G = A >4 U is affine with A ~- ~v , U <_ GLm(p) ,  and n = pro. Let  p~ be 

the index of V n A in A. Then l = vY_:A Let (/ be a conjugate of V with p~- - i  " 

IV n U I being maximal. Then V = Nu( ( /  n A)(fz n A). 

(b) I f  G is not  aft/he, then either  G is a group as in 6.2, and V a point stabilizer, 

or one of the following holds. 

(i) n = 6, 1 = 5, G = PSL2(5) ,  and V is isomorphic to the dihedral group 

of order  6. 

(ii) n = 8, l = 7, G = PSL~(7),  and V ~- A4. 

(iii) n = 12, l = 11, G = Ml1, and V ~- A6. 

Proof'. The  act ion of G on G / V  is faithful; see the proof  of 4.1(4). Thus  all 

condit ions of 5.2 are fulfilled, so f rom 5.2(i) we know already tha t  a has orbits  of 

lengths n - 1 and t wi th  lln - 1 on G / V .  

T o  (a): Wi thou t  loss assume a E U. F rom 5.2(i) we get t ha t  the two cycles 

of a on G / V  are just  the  two orbits  of U on G/V .  Replace V by a conjugate  of 

itself, such t ha t  V n U is maximal .  Then  the  orbit  of U on G / V  containing the 

coset V has  length t, thus 

l= IyVl IVl 
IYl IVnVl 

Set s = n~___._11 and consider the orbit  of V on G /U  th rough  U. This  orbit  has 

length 
- - = - - . [ U V  I IUI [G: U_____]] = 1- n = n . 

[U[ [U A V I [G:V]  n -  l + l l + s  

Fur ther ,  the group V n A of order pm-r acts  f ixed-point-freely on this orbit .  We 

get 
n p m  

pm-r] _ - - ,  
l + s  l + s  
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hence 

(4) 1 + sip 

The lengths of the orbits of A on G/V are [A: A n V] = p~. Thus 

Prln - l + l = (n - i) ( i  + l ) , 

hence p~ll + s. Together with (4) we get s = p~ - 1, thus l is as claimed. Further, 

as we have equality in (4), we see that  V N A - -  with respect to the action on 

G/U - -  is transitive on the V-orbit through U. Rephrased in terms of subgroups 

that  means UV = U(A n V). The modular property yields V = (U n V)(A n V). 
Obviously U A V <_ Nu( AN V), thus V < Nu( AN V)( AN V). The other inclusion 

holds as well, for otherwise the (on G/U) intransitive group Nu(V n A)(V n A) 
would properly contain V, contrary to condition (2). 

T o  (b): Now G is not affine, and by (3) we know G from Theorem 6.2. The 

case G = An or Sn has been dealt with in the proof of Proposit ion 4.2; there we 

used the assumption 2 < i < n - 2 only to assure that  G is the alternating or 

symmetr ic  group. 

Thus these groups are excluded by now. In the other cases n = 1 + p with p 

a prime holds, and p divides the order of G. Let U be the stabilizer of a point. 

First suppose l = 1. Then U is contained in a conjugate of V, and therefore 

conjugate to V because both  groups have the same index n = n - 1 + l in G. 

That  is V is a point stabilizer. 

From now on suppose l > 1. We get l - - p f r o m l i n - 1 ,  hence [G: V] = 2p. 

Using the atlas of finite simple groups [4], we see that  the Mathieu groups M12 

and M24 do not contain subgroups of index 2p. 

Now we investigate Ml l  in its 3-transitive representation of degree 12, using 

[4]. The group Mll  contains exactly one conjugacy class of subgroups of index 

22. Let V be one of these groups; it is isomorphic to A6. As A6 does not contain 

a subgroup of index 12, it is intransitive. But every group M which contains V 

properly is transitive by Lemma 5.1(i). It  is clear that  an element a E Mll  of 

order 11 has two cycles of length 11 on G/V, for otherwise it would be contained 

in some conjugate of V; however 11 does not divide IA6]. 

Now suppose G = PSL2(p). Then I V] = ~ - -  P2-14 , and the Diekson list of 

subgroups of PSL2(p), given in [15, II, 8.27], shows that  only the possibilities 

from (b)(i) and (ii) can occur. 
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If G -- PSL2(5) and V dihedral of order 6, then V is intransitive, for otherwise 

V would be sharply transitive; however the involutions in PSL2(5) have fixed 

points. 

If  G = PSL2(7) and V ~ A4, then V is intransitive, as n = 8 ~ 12 = IV I. 

The groups M containing V properly are again transitive by 5.1(i), and the same 

argument as above shows that  an element of order p has two cycles on G / V .  

Now we exclude G = PGL2(p). Let U ---- AGLI(p)  be a point stabilizer. As 

G is 3-transitive, we can apply 5.2(ii) to get the assertion that  AGLI(p)  would 

have two permutat ion inequivalent transitive representations of degree p. That  

is a contradiction, as any two subgroups of order p - 1 in U are conjugate. | 

A partial  converse to 7.1(a) is 

PROPOSITION 7.2: Let q be a pr ime power and G = A >4 U be an affine group 

with A = ~ and U < FL~(q), where U contains an (q~ - 1)-cycle a. Let B be 

a hyperplane in A, and V := Nu(B)  �9 B.  Then G, V, and a fulfill (1) to (4) in 

Proposition 7.1. 

Proo~ With respect to the affine operation of G on A, the group V is just the 

setwise stabilizer of B. Thus V is intransitive. If V < M _< G, then there is 

x E A \ B with x E B M. Then A = B | Fq �9 x < B M, and M is transitive. 

It  remains to show that  (a} has at most two orbits on G /V .  As G is transitive 

on the set /3 of the affine hyperplanes, we get that  the representation of G on 

G / V  is equivalent to the representation on B. The group (a} acts transitively on 

A \{0} ,  hence (a) is also transitive on the parallel classes of/3. The assertion 

follows, as a(q'-l)/(q-1) generates the group of scalars, which has two orbits on 

every parallel class of/3. | 

8. T h e  g e n u s  0 c o n d i t i o n  

We continue to investigate the configurations fulfilling (1) to (5) in Proposition 

4.1 for i = 1, now by making heavy use of condition (5). Later we see that  we 

merely need to know the cases when Gy is not conjugate to G~. 

By a h y p e r p l a n e  s t ab i l i z e r  we mean a subgroup V of G as in 7.2. 

PROPOSITION 8.1: Let G~ and Gy be two non-conjugate subgroups of the finite 

group G. Denote by T~ (resp. Ty) the action of  G on the cosets of G~ (resp. G~). 

Let n = [G: G~] be the degree of Ty. Fhrthermore, let G be a normal subgroup 
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of G, such that the conditions (1) to (5) in Proposition 4.1 are fulfilled for i = 1. 

Then one of the tbllowing holds, and each of these cases actually fulfills all these 

requirements. 

(a) n = 4, Ty(G) = A4, Ty(G N G,)  has order 2. 

(b) n --- 4, Ty(G) = Ty(a) = 84, Ty(G~) is the intransitive subgroup of order 

4. 

(c) n = 16, Ty(8)  = Ty(G) = AFL2(4), Ty(G~) is a hyperplane stabilizer (with 

q = 4 in 7.2). 

(d) n = 9, ry (G)  = Ty(a)  = AFLI(9), Tv(G~ ) is a hyperplane stabilizer. 

e )  n .~- 

(f) n = 

(g) n = 

(h) n - -  

9, Ty(G) = Ty(G) = AGL2(3), Ty(G~) is a hyperplane stabilizer. 

6, Ty(G) = Ty(G) = PSL2(5), Ty(Gx) ~ D3. 

8, Ty(G) = Ty(G) = PSL2(7), Ty(G~) ~ A4. 

12, Ty(G) -- Ty(G) = Mll,  Ty(Gx) ~- A6. 

Proof: We regard G as a permutation group represented via Ty, so we omit the 

symbol Ty during the proof. 

We split the proof into two cases. 

G affine. As G normalizes the unique minimal normal subgroup A of 8 

(uniqueness follows from 2-transitivity of 8 ) ,  we get that  8 is affine too. 

Affine primitive groups 8 which satisfy the conditions 4.1(5)(i) and (iii) have 

been classified by Guralnick, Thompson, and Neubauer up to small cases. 

Choose an ( n -  1)-cycle a~ E 8 as in 4.1(5). Write U = Gy, V = Gx, 

t) = 8 A G y ,  and 1) = 8 N G x .  Without loss we assume a~ E f). Then, 

for some prime power q, we get A = ~q and 8 = A ~ /)" for some U with 

GLe(q) _</) _< rLe(q); see 6.3. 

LEMMA 8.2: I r a "  = 1, then (a) holds. 

Proof: Suppose 8 "  = 1. We omit the trivial case 8 = Z2. Thus n > 3. Then 

G' r 1, for otherwise 8 = Zp, contrary to the existence of a~ E G. Therefore A 

is contained in the normal subgroup 8 ~. Now G' is abelian, hence G' = A. Thus 

/) is abelian. From this we g e t / )  = (a~). From a Theorem of Zariski [14, 3.8], 

we see that  (5)0) and (iii) imply 8 = AGLI(p) with p e {3, 5, 7}, or 8 = A4. 

First consider 8 = AGLI(p) with p C {3, 5, 7}. As G is its own normalizer in 

Sv, we get 8 = G. But then U and V are conjugate by 7.1. 

Now let 8 be A4. We also study G = $4 in this paragraph. Now V is an 

intransitive subgroup of index 6 by our conditions. From this we see that  the 
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action of G _< $4 on G / V  is equivalent to the action of G on the 6 subsets of size 

2 of {1, 2, 3, 4}. Denote by indy the index with respect to the action on G/V.  

The conjugacy classes of $4 are described by representatives. We get 

Class (12) �9 61 (12)(34) e C2 (123) �9 63 (1234) �9 64 
ind 1 2 2 3 

indy 2 2 4 4 

The conditions (5)(ii), (iii), (iv), and (v) yield (0"1,0"2,0"3) e (61,64,63) ,  

(0"1, 0.2, 0.3) �9 (62, 63, 63), or (0.1,0"2, 0"3, 0"4) �9 (62, C1, C1, 63), up to interchang- 

ing the order of conjugacy classes (via ab = bah). Examples, which show that 

also (5)(i) can be fulfilled, are 

0.1 = (12), a2 = (1234), 

0.1=(12)(34),  0"e = (123), 

0"1 = (12)(34), 0"2 = (12), 

a3 = (143) 

0.3 = (143) 

0.3 = ( 1 3 ) ,  0" 4 = (143). 

LEMMA 8.3: I fG"  ~ 1, then q E {2,3}. 

Proof." We use the classification results of Guralnick and Thompson [14], to- 

gether with (5)(i) and (iii). Suppose that q > 3. As the order of a t  is n - 1  = q~- l ,  

we first get r = 3 from [14, 4.1]. Then [14, 5.1] leaves q = 5, but also q = 5 is 

impossible, as we see from the cases listed in [14, 6.2]. | 

The cases p = 2 and p = 3 have been investigated more closely by Neubauer. 

Using his results in [22, 1.5] and [23], we derive 

LEMMA 8.4: If  G" ~ 1, then n E {9,4,8,16,32}. 

Using 6.3, we see that we are left to investigate the following candidates for G. 

AFLI(9), AGL2(3), AFLI(8), AGL3(2), ~16 )~ Ga1(~"161~4), 

AFLl(16), AGL2(4), AFL2(4), AGL4(2), AFLl(32) and AGLs(2). 

These groups are small enough to be checked with the help of the computer 

algebra system GAP. The strategy is as follows. First one checks which of these 

groups possess a generating system as required by (5)(i) and (iii). These are 

just the groups AFLI(9), AGL2(3), AFLI(8), AGL3(2), AFL2(4), AGL4(2), and 

AGL5(2). 

Next 7.1(a) tells us what subgroups V of G to consider. Again with GAP 

we checked which of the generating systems computed above meet the genus 0 
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conditions with respect to the action on G/V, i.e. in what cases (5)(ii), (iv), and 

(v) hold as well. We get the cases (c), (d), and (e) listed in 8.1. The details and 

the GAP program can be found in [21]. 

G non-af f ine .  By 7.1 we are left to look at G = PSL2(5), PSL2(7), and Mll  

of degree 12, together with the subgroups V of G specified there. As G is simple 

in these cases, we have G -- G. Again denote the index of the action of G on 

G/V by indy .  We use the labeling of the non-trivial conjugacy classes of G given 

in the Atlas [4]. 

For G = PSL2(5) we compute 

Class 1A 2A 3A 5A 5B* 

Order 1 2 3 5 5 

ind 0 2 4 4 4 

indv 0 4 6 8 8 

The conditions in (5) yield (up to permutation of the conjugacy classes) r = 

3 and al  E 2A, a2 E 3A and a3 E 5 A U 5 B , .  Again using the character 

table, one verifies that (2A, 3A, 5A) and (2A, 3A, 5B , )  are strictly rigid systems 

of eonjugacy classes of G, see [25]. 

Quite analogously we discuss G = PSL2(7), and get 

Class 

Order 

ind 

indv 

1A 2A 

1 2 

0 4 

0 6 

3A 4A 7A 7 B * *  

3 4 7 7 

4 6 6 6 

8 10 12 12 

Here we get r = 3, a l  C 2A, a2 E 3A and aa C 7A U 7 B ,  , .  Again we check 

that (2A, 3A, 7A) and (2A, 3A, 7B * , )  are strictly rigid systems for PSL2(7). 

Finally we have to consider Mu.  We compute 

Class 1A 2A 3A 4A 5A 6A 8A 8 B * *  11A l i B * *  

Order 1 2 3 4 5 6 8 8 11 11 

ind 0 4 6 8 8 8 10 10 10 10 

indv 0 8 12 14 16 16 18 18 20 20 

The conditions (5) yield r = 3, al  E 2A, 62 E 4A and a3 E l l A  U l l B  �9 , .  It 

is known that  (2A, 4A, l lA)  and (2A, 4A, l l B � 9  , )  are strictly rigid systems of 

Mll ,  see [20, page l17f]. I 
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9. S o m e  p r e l i m i n a r y  r e s u l t s  

This section provides various results which will be needed to prove Theorem 

1.3(a). 

LEMMA 9.1: Let m E N and let w ( X )  E Q[X] be a polynomial of degree > m 

and w(O) # O. Set R(X) = w ( X ) / X  m. Then IR(Q) n Zl < 

Proo~ Set r = degw > m. Wi thou t  loss assume w ( X )  = arXr+  .. .+a lX+ao  E 

Z[X]. Choose q E N, p E Z with gcd(p, q) = 1, such tha t  R(p/q) E Z. Then  

arp ~ + ar_lp~-lq + . . .  + alpq ~-1 + aoq ~ 
E Z .  pm qr--m 

NOW q divides a~, as r - m > 1. Thus q is bounded.  Furthermore,  p divides 

aoq ~ ~ O, hence p is bounded as well, and the assertion follows. | 

LEMMA 9.2: Let G = ~ >~ GLm(p) be the a//ine general linear group with p 

a prime. Let a be an (pm _ 1)-cycle which is conjugate to its inverse a -1 in G. 

Then G = $3 or $4. 

Proo~ Withou t  loss assume a E GLm(p). As a fixes only one point,  the elements 

a and a -1 are already conjugate inside GLm(p). Thus we get an au tomorph i sm 

of the algebra generated by a in E n d ( ~ p  ) which inverts a. Schur 's  l emma tells 

us tha t  this algebra is isomorphic to the finite field Fpm, and a is a generator  

of the multiplicative group. This au tomorphism is a power of the Frobenius 

automorphism,  thus it maps x E Fp,, to  x p' for a suitable i in {0, 1 , . . . ,  m - 1}. 

The relation a p' = a -1 = o " p ~ - 2  yields pi = pm _ 2. The only solutions to 

p~(p'~-i - 1) = 2 are p = 2, i = 1, m = 2 a n d p  = 3, i  = 0, m = 1. The  assertion 

follows. | 

As a consequence of [7, Theorem 2], we get 

THEOREM 9.3 (Fried): Let  E be an extension of degree m of  Q(t),  such that 

Q is algebraically dosed in E. Denote by ~ a Galois closure of  EIQ(t), and set 

G = Gal(~[Q(t)) .  Suppose that the extension CE[C(t )  has a totally ramified 

rational place, and that G is a 2-transitive group on the conjugates orE.  I f  there 

is another permutation representation of G which admits the same permutation 

character, then these two representations are equivalent. 

The following is a special case of the so-called b r a n c h  c y c l e  a r g u m e n t .  For 

a proof  see [20, II, w or [11]. 
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THEOREM 9.4: Let E be an extension of degree n of Q(t), such that Q is 

algebraically dosed in E. Denote by ~2 a Galois closure of E[Q(t). Let G = 

Gal(~21Q(t)) be the arithmetic monodromy group of EIQ(t ). Let Q be the alge- 

braic closure of Q in ~l, and al ,  a 2 , . . . ,  ar be a generating system of the geometric 

monodromy group G = Gal(~)l(}(t)) as in section 2. Let a be one of the a{, and 

suppose that the branch point corresponding to a lies in Q u {co}. Then a TM is 

conjugate inside G to a for every integer w prime to the order of a. 

10. Proofs  of  the  Theorems  1.2 and 1.3(a) and (b) 

In the following we study a counter-example, where h(Y)  �9 K[Y] is a polynomial 

of degree n, and i is as in the Theorems to be proved. Set f ( X ,  Y)  := h ( Y ) - X Y  ~, 

and choose the rational functions Rj according to Corollary 3.2. As we consider a 

counter-example, there is a rational function R among the Rj, such that infinitely 

many elements of the set R ( K )  n OK are not of the form h(n)/,~ ~ with n �9 K. 

Note that  in the situation of Theorem 1.3(a), we know that Vh is finite by Lemma 

9.1. 

We quickly repeat the Galois theoretic setup from section 4. Set H ( Y )  = 

h ( Y ) / Y  ~, and let t be a transcendental over C. In an algebraic closure C(t) of 

C(t), pick elements x and y such that 

H(y) = h(y) /y  i = R(x)  = t. 

Denote by 12 the Galois closure of K(x ,  y)]K(t) inside C(t). Set G = Gal(fl lK(t)) .  

The fix groups of y and x are labelled Gy and G~, respectively. Further denote 

by / f  the algebraic closure of g in ~. Set G = Gal(fll/~(t)) ~- Gal(CA21C(t)). 

The properties of these groups are listed in Proposition 4.1. 

LEMMA 10.1: The groups G,  and Gy are not conjugate in G. Furthermore, 

n_>4. 

Proof: Suppose G~ = Gy for some g E G. Then x 9 is fixed by Gy, hence 

xg e K(y) .  From d e g H  = [G: Gy] = [G: G~] -- degR we get xg = ay+b with cyd-d 
(:b) �9 GL~(K). Then H(y) = t = t g = R(x)g = R(xg) = R(aY+b~ cy+dJ, in particular 

the value sets R ( K )  and H ( K )  differ only by finitely many elements. But this 

contradicts the choice of R. The assertion n _> 4 then follows directly from 4.1(1) 

and (4). | 
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This already proves Theorem 1.2, as Gy and Gx are conjugate by Proposition 

4.2. Also, we immediately get Theorem 1.3(b), because for the degrees n excluded 

from the consideration, the subgroups Gy and G~ are conjugate by Proposition 

8.1. 

Thus, from now on we have to discuss the case i = 1 with K = Q. We will 

not use any results which depend on the classification of finite simple groups. In 

particular, we do not use Theorem 6.2. 

As Ty(G) contains the (n - 1)-cycle at ,  we know from Theorem 6.1 that  Ty(G) 
is affine, PSL2(p), or 3-transitive. In these three cases, quite different arguments 

apply, and n = 4 needs a special treatment. 

n r 4 a n d  Tu(G ) af l lne or  PSL2(p). We consider the branched covering 

p1 __. p1 of the Riemann spheres, induced by the rational function R E Q(X). 

We call this covering also R. Let ( r l , (72, . . . ,a r  be generators of G, with a~ 

belonging to the branch point co, according to section 2 and Proposition 4.1. 

Then Ty(a~) is an (n - 1)-cycle. As the branch point corresponding to a~ is co, 

we can apply Theorem 9.4 to conclude that  a~ is conjugate in G to aT for every 

integer w prime to the order of aT. 

In the affine case, this yields n _< 4 by Lemma 9.2, and Lemma 10.1 shows 

n = 4, a case to be discussed later. 

The other possibilities are Ty(G) = Ty(G) = PSL2(5) or PSL2(7), see the proof 

of Proposition 7.1(b), together with Theorem 6.1. In the first case, one checks 
2 3 that  aT and a~ are not conjugate in PSL2(5), and in the second case ar and a~ 

are not conjugate in PSL2(7). 

n ~ 4 and Ty(G) 3- t rans i t ive .  We are going to apply Proposition 5.2(ii), 

together with Theorem 9.3. Again choose generators ai of G as in the previous 

paragraph. Without loss assume a~ E Gy. 

Choose the subgroups U and V of Gv as in Proposition 5.2(ii). Let E be the 

fixed field in 12 of U. Combining 5.2(ii) with Theorem 9.3, we see that we are 

done once we know the following: Q is algebraically closed in E,  and CEIC(y ) 

has a totally ramified rational place. 

As to the first statement. Suppose that  the algebraic closure (~ of Q in E is 

bigger than Q. Then E N q~(y) > Q(y). In terms of Galois groups, this means 

u .  (~ n Gy) < Gy. 

As G~ acts 2-transitively on the cosets of U in Gy, the subgroup U is maximal 
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in Gy. Therefore G M Gy <_ U. The action of G~ on the conjugates of y different 

from y is faithful and transitive, hence U does not contain a non-trivial normal 

subgroup of Gy. We get G M G~ -- 1. The transitivity of the groups Ty(G) and 

T~(G) (see 4.1(5)) implies G = GGy = GG~. Combining this with 5.2(ii), we 

arrive at the contradiction 

ICI - [G: G~] = 2 ( n -  1). 
n = [a: a~] -- lal >_ Id n a~-----~ 

The second assertion follows from the fact that  a~ is a generator of an inertia 

group of the extension eale(y), permuting transitively the (n - 1) conjugates 

of CE over C(y). Note that the place of C(y) corresponding to a~ is rational, as 

H - t ( o c )  = {0, oc}. 

n = 4. The interesting feature of this case is that,  in contrast to the former 

cases, the consequences from Corollary 3.2(a), (b), and (c) do not suffice, as we 

will see later in the explicit construction yielding a proof of Theorem 1.3(d). We 

really have to use part (d) now. 

Now Ty(G) _< $4, and Tx(G) is the action of degree 6, given by permuting 

the 2-sets of {1, 2, 3, 4} (see Proposition 8.1). In the proof of Proposition 8.1, we- 

computed the possible systems al ,  a 2 , . . . ,  a~ fulfilling 4.1(5). a .  has order 3 and 

corresponds to the branch point ec. Then T~(a,.) is a product of two 3-cycles. 

Let A and # be the the 2 triple points above 0o with respect to R. We may 

assume that  neither A nor # equals 0o. The absolute Galois group of Q fixes 

A + #, thus A + # -- 0 without loss of generality. Then 

R ( X )  - p(X)  
( X  2 _ ~ ) 3 '  

with a polynomial p E Q[X] of degree at most 6, and which has no roots at A 

and -A. Multiplying R by a non-zero rational doesn't  affect the arithmetic and 

geometric monodromy group. So we assume for a moment that  p is monic. Then, 

Puiseux' theorem allows us to express the 6 solutions of R ( X )  = t in terms of 

power series: 

xi,c = eA + al,e~it -1/3 + a2,c~21t -2/3 + . . .  E Q((t-1/3)) ,  

with ( a primitive cubic root of 1, e E { -1 ,  1}, i E {1, 2, 3}, and ak,~ E Q. This 

way we get an embedding of Q~2 in the field of Laurent series s = Q((t-1/3)) .  

Consider the automorphism a of s which is trivial on Q and replaces t -1/3 by 
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~t -1/3 Then ~ fixes t and permutes the x~,~. Thus a restricts to an element 

of the geometric monodromy group of R. The important observation is, that  

permutes the elements in {x1,1, x2,1, xa,1} and {xl,-1, x2,-1, x3,-1} cyclically. 

Now suppose that A is not rational. Then there is an automorphism of Q, which 

maps A to -A (A 2 E Q by construction). Extend this automorphism to an 

automorphism fl of s which fixes t 1/3. Then/3 restricts to an automorphism of 

the arithmetic monodromy group of R, which interchanges just the two sets from 

above. 

However, $4 in the action on the 2-sets of {1, 2, 3, 4} does not contain such a 

pair of elements. By abuse of notation, assume that  a = (123) E $4. Then a 

permutes the sets {1,4}, {2,4}, and {3,4} cyclically. Thus there is a /3  E $4, 

which just interchanges these three sets with the sets {1, 2}, {2, 3}, and {1, 3}. 

However, this is impossible. Observe that /3  has to move 4, and also has to move 

at least two of the numbers 1, 2, 3. Further, it must not transpose any of the 

numbers 1, 2, 3. This of course is nonsense. 

This contradiction shows that A is rational. Thus, replacing X by (AX + 1)/X 

in R produces 

k ( x )  _ X 3 , 

with /5 E Q[X]. The ramification above cc tells us that  fi has degree 6. 

Furthermore, the substitution didn't change the value set of the rational function 

on Q U {c~}. Thus I/~(Q) M 71,[ = o~, contrary to Lemma 9.1. 

11. P r o o f  o f  T h e o r e m  1.3(c) a n d  (d) 

Before we start we need to investigate properties of value sets of rational functions 

on groups of units. Let K be a number field, OK the ring of integers, and U 

be the group of units. Suppose that U is infinite. If R and H are non-constant 

rational functions over K,  such that R(U) is contained in H(K) up to finitely 

many exceptions, then we conjecture that R(Z) = H(c(Z)) for some c E K(Z). 

We prove this under a certain additional hypothesis. 

If P(X, Y) E Q(X)[Y] is irreducible over Q, then denote by e(P) the smallest 

positive integer e such that P(X, Y) = 0 has a solution y in Q((X1/~)). The 

existence of such an e follows from Puiseux' theorem. 

PROPOSITION 11.1: Let K be a number field with an infinite group U of units. 

Let R, H E K(Z) be non-constant rational functions, such that the value set 
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R(U) is contained in H ( K )  up to finitely many exceptions. Write R = R1/R2, 

H = H1/H2 with Ri, Hi E K[Z] as reduced fractions. Let 

R I (X )H2(Y)  - R2 (X)HI (Y )  = Hr  Y) 

be a factorization in irreducible factors ~i E K[X,  Y]. Set ei = e(~i) as defined 

above, f f  all the irreducible factors over K of ~ i ( X ~ , Y )  are absolutely irre- 

ducible, then there is a rational [unction c E K ( Z )  such that R(Z)  = H(c (Z) ) .  

In the proof, we use the following two results of P. D~bes. 

PROPOSITION 11.2 ([5, Prop.  3]): Let K be a number field, and �9 E K[X,Y]  

be irreducible. For e E N, let ~ ( X  ~, Y)  = r  r be a decomposition over 

Q into irreducible factors r Denote by L the field generated by K and the 

coefficients of the polynomials r Choose u E L \ { 0 }  with T ~ - u irreducible. 

Then ~ ( u X  ~, Y)  is irreducible in K[X,  Y]. 

THEOREM 11.3 ([6, Cor. 1.6(b)]): Let K be a number field, and P E K[X ,Y]  

be irreducible over K.  Further, suppose e(P) = 1. Choose u E K \ { 0 }  such tha t  

u is not  a roo t  o f  unity. Then P(u m, Y)  is irreducible over K for all but finitely 

many integers m. 

Proof of 11.1: Let E be the group of roots  of uni ty in K.  Then  U = E • A with 

a free abelian group A of finite rank _> 1 (see [19, V, w Let u E A be a free 

generator  of A. Then  pu  is not a power with exponent  > 1 of an element in K 

for all # E E.  We may  addit ionally assume tha t  u is not  of the form - -4w  4 with 

w E K.  For if pu  has this form for /t E E,  t h e n # =  u 4 h a s a s o l u t i o n u  E E.  

But  this cannot  happen for each #, because the map  X ~-* X 4 is not bijective on 

the finite set E by the presence of - 1  E E.  

From Capelli 's  Theorem [17, VII ,  9.1] we get tha t  X m - u is irreducible over 

K for all m E N. 

Using the nota t ion  from 11.1, we now get f rom 11.2: ~i(uXe~,Y)  is irre- 

ducible in K[X, Y] for all i. Clearly e(r ~, Y)) = 1. Applying 11.3 - -  with 

P(X ,  Y)  = r  ~, Y )  - -  we get: r  m~+l ,  Y) is irreducible in K[Y] for al- 

most  all m E Z. Set e = lcm(el ,  e2 , . . . ) .  Then  ~i(u m~+l, Y)  is irreducible for 

every index i and all but  finitely many  m E 77,. 

Now recall tha t  R(U) is contained in H ( K )  up to finitely many  exceptions. 

Thus 

Rx(uCm+I)H2(Y) - R2(u~m+l)Hl(Y) = I I r  era+l, Y) 
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has for almost all m E Z a root Yo C K. Then one of the factors on the right 

hand side - -  let j be its index - -  has a root in K for infinitely many integers 

m, though it is irreducible by the considerations from above. Therefore ~j has 

degree 1 with respect to Y, hence ~ j ( X ,  Y )  = o ( X )  - c 2 ( X ) Y  with ci e K[X] .  

Set Y = el(x) = c ( X ) ,  then R ( X )  - H ( c ( X ) )  = O. | c2(x) 

Now we are prepared to prove Theorem 1.3(c). Let G = G be one of the groups 

listed in Proposition 8.1, with subgroups G~ and Gy as given there. Then we 

showed the existence of a generating system al ,  a 2 , . . . ,  a~ of G, such that the 

conditions (1) to (5) in Proposition 4.1 are fulfilled. Note that the degrees of Ty 

are 4, 16, 9, 9, 6, 8 and 12, respectively. As a consequence of Riemann's existence 

theorem, there exists a Galois extension II of Q(t) with G = Gal(IIIQ(t)), such 

that (O l , . . . ,  a~) is just a branch cycle description of this extension, as defined 

in section 2; see e.g. [20, w 

From the Riemann Hurwitz genus formula, together with 4.1(5)(iii) and (v), 

we get that  the fixed fields in II of Gu and G~ have genus 0. As the base 

field is algebraically closed, these fields are rational fields Q(y) and Q(x), with 

y, x E H. Let ar correspond to the place at infinity. Choose H, R E Q(Z) with 

H ( y )  = R ( x )  = t. Then 4.1(5)(ii) says that H - l ( o c )  consists of an (n - 1)- 

fold point and a simple point. By linear fractional change of the variable Y, 

we may assume that the simple point is 0, and the multiple point is co. This 

means H ( Y )  --- h ( Y ) / Y  with a polynomial h. Similarly, use 4.1(5)(iv) to show 

that (without loss of generality) R ( X )  = w ( X ) / X  l for some integer l and a 

polynomial w. 

Now define the number field K as follows. Build the field which is generated by 

the coefficients of H and R. Then enlarge it by a finite extension, such that the 

factors (Ih(X ~', Y) as defined in 11.1 split in absolutely irreducible factors over 

this field. Furthermore, assume that this field has an infinite group of units (i.e. 

is not the field of rationals or an imaginary quadratic field). Call this tentative 

field F.  Let fl be the Galois closure of F ( x , y ) l F ( t  ) in H. Now let K be the 

algebraic closure of F in ft. 

Thus G restricts to the Galois group of ~ l K ( t ) .  Let O g be the ring of integers, 

and U the infinite group of units in OK. By multiplying the functions H and R 

with a suitable integer, we may assume 

H ( y )  = h(y)  and R ( x )  - w ( x )  with h , w  �9 OK[Z],  1 �9 N. 
y x I 
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Condition 4.1(1) says that G~ permutes the conjugates of x intransitively. 

Thus h ( Y )  - R ( X ) Y  E K ( X ) [ Y ]  is reducible. In particular, h ( Y )  - R ( u ) Y  is 

reducible in K[Y] for each unit u E U. Note that R(u)  = w ( u ) ( 1 / u )  z E OK.  So 

we are done once we know that there are infinitely many u E U, such that R(u)  

has not the form H(n) = h ( n ) / n  for some n E K. If this would not hold, then 

R ( X )  = H ( c ( X ) )  with a rational function c by Proposition 11.1. However, this 

cannot be the case for a degree reason, because d e g H  < degR < 2(degH - 1) 

by 5.2(i) and 2.1. 

Finally we prove Theorem 1.3(d). The argument is similarly as above, except 

for the fact that we explicitly write down the rational functions h and R, and 

that we replace the use of 11.1 by a direct argument. Set h ( Y )  = ( Y  - 1) 4 and 

R ( X )  = ( X  + 1 ) 4 ( X  - 1 ) 2 / X  3. One verifies 

h ( Y )  - R ( X ) Y  = ~ I ( X , Y ) r  
X 3 

with 

and 

~ t ( X ,  Y )  : X 3 + y 2 X  + Y X  2 - 2 Y X  - Y 

~2(X, Y) = 1 + y 2 X 2  - 2 Y X  2 § Y X  - Y X  3. 

As K <: • is a real-quadratic number field, OK has an infinite group U of units 

([19, V, w We have to show ] H ( K ) \  R(U)I = oo. For this suppose the 

contrary, that is h ( Y )  - R(u)Y has a root in K for almost all u E U. Thus for 

all sufficiently big values u the polynomial ~l(u,  Y) or ~2(u, Y) has a root in 

K. The discriminant dis y ~ ( u ,  Y) has to be a square in K for such a u and 

~i. As d i s r ~ l ( u ,  Y) = - 3 u  4 - 4u 3 % 2u 2 + 4u + 1 is negative for all big u (and 

hence not a square in K), we get that ~2(u, Y) has a root in K for all big u, 

thus dis y ~ 2 ( u ,  Y )  = u 4 + 4u 3 + 2u 2 - 4 u -  3 is a square in K for all big u. If 

we replace u by its algebraic conjugate, then this discriminant also has to be a 

square. Thus u 4 + 4u 3 + 2u 2 - 4u - 3 is also a square for all small u. We get a 

contradiction, because this term becomes negative for small u. 
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